Molecular Design by Cycloaddition Reactions. Part XII. ${ }^{1}$ Syntheses of Fluoranthene and Diazafluoranthene Derivatives

By Tadashi Sasaki," Ken Kanematsu, and Toshiyuki Hiramatsu, Institute of Applied Organic Chemistry, Faculty of Engineering, Nagoya University, Chikusa, Nagoya 464, Japan

The cycloaddition reaction of acenaphthylene with coumalic acid. its methyl ester, or 4.6-dimethylcoumalic acid. with loss of carbon dioxide from the bridge, afforded a 2:1 adduct and a fluoranthene-8-carboxylic acid. The corresponding reaction with 3.6 -disubstituted s-tetrazines gave 8.9 -diazafluoranthene derivatives. Mechanisms are discussed.

The use of 2-pyrones in Diels-Alder reactions is well known, ${ }^{2}$ and has been much studied in recent years. ${ }^{3}$ With alkyl coumalates, the reactions of electron-rich dienophiles (i.e., dienophiles with inverse electron demand) readily give cycloadducts as was suggested from extended Hückel MO calculations of the net charge distribution on methyl coumalate. ${ }^{4}$ Similarly the use of 3,6-diaryl-s-tetrazines in the Diels-Alder reaction is also well known. ${ }^{5}$ We have also described the ready cycloaddition reactions of cycloheptatriene with 2 -pyrone derivatives to give novel bridged cage adducts. ${ }^{6}$ As a continuation of our previous work, ${ }^{6}$ we now describe the cycloaddition reactions of coumalic acid derivatives and symmetric tetrazines having electron-poor double bonds with acenaphthylene as an electron-rich dienophile.

[^0]Coumalic acid (la), methyl coumalate (lb), and 4,6-dimethylcoumalic acid (1c) were each heated with an equimolar amount of acenaphthylene (2) in xylene at $180-200^{\circ}$ in a sealed tube to afford the $1: 2$ adducts (3a-c), formed with loss of carbon dioxide from the brídge, in $25-30 \%$ yields.

Structural elucidation for these adducts was based on spectral data, elemental analyses, and mechanistic considerations. The high field shift of the methyl proton signal ($\delta \mathbf{3 . 0 5}$) influenced by the naphthalene diamagnetic ring current effect indicated the endo-endo 1:2 adduct as depicted in Scheme 1. Similarly, the structure of compound (3c) was assigned from the n.m.r. spectrum of its methyl ester (3d) [obtained on treatment of (3c) with diazomethane]. The reaction of an excess of (la) and (lb) with acenaphthylene in dimethylformamide afforded fluoranthene derivatives (4a) and (4b) in $30-35 \%$ yields. \dagger The methoxy-protons in compound (4a) appear at $\delta \mathbf{3 . 9}$ as a result of the diamagnetic ring current effect.

[^1]From the foregoing results, the cycloaddition reactions of (1) and (2) seem to be dependent on the solvents, but the effect could not be investigated fully because of the insolubility of both compounds in a number of polar and non-polar solvents. However, it is evident that compound (3) was formed by loss of carbon dioxide from the initially produced $1: 1$ adduct (A) followed by successive addition of acenaphthylene to an intermediate (B) which

EXPERIMENTAL

M.p.s were measured with a Yanagimoto micromelting point apparatus. Microanalyses were performed on a Perkin-Elmer 240 Elemental Analyser. N.m.r. spectra were taken with a JE C-60-XL spectrometer with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. U.v. spectra were determined with a Jasco ORD/UV-5 recorder. I.r. spectra were taken with a Jasco IR-S spectrophotometer.

Scheme 1

Scheme 2
can be explained in terms of a double Diels-Alder mechanism with inverse electron demand. Compound (4) was produced by dehydrogenation (presumably by air) of the intermediate (B) as shown in Scheme 1. The intermediate (B) seems to be an attractive synthetic precursor for a peripheral 14π-annulene (C). However, attempts to isolate the intermediate (B) were unsuccessful, even under milder conditions.

Similar reactions of 3,6-diphenyl- (5a) and 3,6-di-(2-pyridyl)-s-tetrazines (5 b) with acenaphthylene in xylene or dimethylformamide at $180-200^{\circ}$ in a sealed tube afforded (6a) and (6 b) in $60-80 \%$ yields. The n.m.r. data (no olefinic protons) and elemental analyses support the novel 8,9-diazafluoroanthene structures.

Coumalic Acid-Acenaphthylene 1:2 Adduct (3a).—Method A. A solution of coumalic acid (1a) ($540 \mathrm{mg}, 4 \mathrm{mmol}$) and acenaphthylene (2) ($610 \mathrm{mg}, 4 \mathrm{mmol}$) in xylene (15 ml) was heated in a sealed tube at 180° for 20 h . The solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel) with benzene as eluant to give $6 \mathrm{~b}, 7,7 \mathrm{a}, 13 \mathrm{~b}, 14,14 \mathrm{a}$-hexahydro-7,14-ethenoacenaphtho $[1,2-\mathrm{k}]$ fuoranthene-15-carboxylic acid (3a) (30\%) as a white solid, recrystallized from methanol, m.p. 293$295^{\circ}, v_{\text {max }}(\mathrm{KBr}) 1675(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$ (Found: C, 86.8; H, 5•1. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 86.95 ; \mathrm{H}, 5.05 \%$).

To a solution of (3a) ($200 \mathrm{mg}, 0.5 \mathrm{mmol}$) in chloroform $(15 \mathrm{ml})$ was added ethereal diazomethane $(0.5-0.7 \mathrm{mmol})$ at 0°. The solvent was removed under reduced pressure and the residue was recrystallized from methanol to give the
methyl ester, identified by mixed m.p. with the adduct (3b), m.p. 257-258 ${ }^{\circ}$.

Coumalic Acid-Acenaphthylene 1:1 Adduct (4a).—Method B. A solution of coumalic acid (1a) $(1.5 \mathrm{~g}, 0.01 \mathrm{~mol})$ and acenaphthylene (2) ($450 \mathrm{mg}, 3 \mathrm{mmol}$) in dimethylformamide $(15 \mathrm{ml})$ was heated in a sealed tube at 160° for 7.5 h . The solution was poured into water and extracted with chloroform, and separation by column chromatography (silica gel) with benzene as an eluant gave fluoranthene-8-carboxylic acid (4a) as a white solid (30%), m.p. $164-165^{\circ}, \nu_{\text {max }}(\mathrm{KBr})$ $1670(\mathrm{C}=0) \mathrm{cm}^{-1}$. When the reaction of equimolar amounts of (1a) and (2) was carried out, the yield of the adduct (4a) was decreased, but (3a) could not be detected.

Compound (4a) was treated with ethereal diazomethane as described above. The residue was recrystallized from nhexane to give the methyl ester of (4a) which was identified by i.r. and mixed m.p. with the adduct (4b); m.p. $87-89^{\circ}$, $\nu_{\text {max. }} 1710 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.

Methyl Coumalate-Acenaphthylene 1:2 Adduct (3b).Similar work-up to method A of a mixture of methyl coumalate (lb) ($620 \mathrm{mg}, 4 \mathrm{mmol}$) and acenaphthylene (2) ($610 \mathrm{mg}, 4 \mathrm{mmol}$) yielded methyl 6b,7,7a,13b,14,14a-hexa-hydro-7,14-ethenoacenaphtho[1,2-k]fluoranthene-15-carboxylate (3b) as white needles (30%), m.p. $257-259^{\circ}, v_{\text {max. }}(\mathrm{KBr})$ $1700(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 3.05(3 \mathrm{H}, \mathrm{s}), 3.75(1 \mathrm{H}, \mathrm{dt}, J$ 7.0 and 2.0 Hz$), 4 \cdot 1-4.35(5 \mathrm{H}, \mathrm{m}), 6.18(1 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz})$, $7 \cdot 1 \ldots 7 \cdot 5(12 \mathrm{H}, \mathrm{m}), \lambda_{\text {max }}$ (EtOH) 321 (log ع $3 \cdot 35$), $317(3 \cdot 48)$, 307 (4.09), 302 (4.14), 292 (4.26), 284 (4.14), and 220 nm (4.97) (Found: $\mathrm{C}, 86.7$; $\mathrm{H}, 5.5 . \quad \mathrm{C}_{30} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{C}, 86.95$; H, $5 \cdot 35 \%$).

4,6-Dimethylcoumalic Acid-Acenaphthylene 1:2 Adduct (3c).-A similar work-up to method A of 4,6-dimethylcoumalic acid (1c) ($680 \mathrm{mg}, 4 \mathrm{mmol}$) with acenaphthylene (2) ($610 \mathrm{mg}, 4 \mathrm{mmol}$) at 200° yielded $6 \mathrm{~b}, 7,7 \mathrm{a}, 13 \mathrm{~b}, 14,14 \mathrm{a}-$ hexahydro-14,16-dimethyl-7,14-ethenoacenaphtho [1,2-k]-
fluoranthene-15-carboxylate (3c) (25\%) as needles, m.p. $>300^{\circ}, \nu_{\text {max. }}(\mathrm{KBr}) 1680(\mathrm{C}=0) \mathrm{cm}^{-1}$ (Found: $\mathrm{C}, 86.75$; H , $5 \cdot 55 . \mathrm{C}_{31} \mathrm{H}_{24} \mathrm{O}_{2}$ requires $\mathrm{C}, 86 \cdot 9 ; \mathrm{H}, 5 \cdot 65 \%$).

Compound (3c) was treated with ethereal diazomethane at 0°. The residue was recrystallized from methanol to give
the methyl ester (3d) as needles, m.p. 286-287 ${ }^{\circ}$, $v_{\text {max. }}(\mathrm{KBr})$ $1700(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 1.05(3 \mathrm{H}, \mathrm{s}), 2.00(3 \mathrm{H}, \mathrm{s}), 3.00$ $(3 \mathrm{H}, \mathrm{s}), 3.55(\mathrm{t}, J 3.0 \mathrm{~Hz}), 3.80(1 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}), 4.15(1 \mathrm{H}$, dd, $7 \cdot 0$ and 3.0 Hz), $7 \cdot 1-7.6(11 \mathrm{H}, \mathrm{m})$, $\lambda_{\max }(\mathrm{EtOH}) 322$ ($\log \varepsilon 3 \cdot 30$), 318 (3.52), $310(4 \cdot 14), 295(4 \cdot 30), 284(4 \cdot 15)$, and $223 \mathrm{~nm}(5 \cdot 03)$ (Found: C, $86 \cdot 6 ; \mathrm{H}, 6 \cdot 1 . \mathrm{C}_{32} \mathrm{H}_{26} \mathrm{O}_{2}$ requires C, $86.85 ; \mathrm{H}, 5.9 \%$).

Coumatate-Acenaphthylene 1:1 Adduct (4b).—Similar work-up to method B of a mixture of methyl coumalate ($1.6 \mathrm{~g}, 0.01 \mathrm{~mol}$) with acenaphthylene ($450 \mathrm{mg}, 3 \mathrm{mmol}$) yielded methyl fluoranthene-8-carboxylate (4b) as plates (35%), m.p. $87-89^{\circ}, \nu_{\text {max }}(\mathrm{KBr}) 1710(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}, m / e 260$ $\left(M^{+}\right), \lambda_{\text {max }}(\mathrm{EtOH}) 370(\log \varepsilon 4 \cdot 00), 352(3.97), 294(4 \cdot 54)$, $284(4 \cdot 32), 264(4 \cdot 23)$, and $230 \mathrm{~nm}(4 \cdot 60), \delta\left(\mathrm{CCl}_{4}\right) 3.9(3 \mathrm{H}, \mathrm{s})$, $7 \cdot 4-8.01(9 \mathrm{H}, \mathrm{m})$ (Found: C, $83.0 ; \mathrm{H}, 4.8 . \mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $83.05 ; \mathrm{H}, 4.65 \%$).

Reaction of 3,6-Diphenyl-1,2,4,5-tetrazine (5a) with Acenaphthylene (2).-A solution of the tetrazine (5a) $(470 \mathrm{mg}$, 2 mmol) and acenaphthylene ($320 \mathrm{mg}, 2 \mathrm{mmol}$) in xylene $(10 \mathrm{ml})$ or dimethylformamide $(10 \mathrm{ml})$ was heated in a sealed tube at 180° for 1 h . After cooling, the yellow solid was filtered off and recrystallized from chloroform to give 7,10-diphenyl-8, 9-diazafluoranthene (6a) as yellow crystals (80%), $m / e 356\left(M^{+}\right)$, $\lambda_{\text {max. }}(\mathrm{EtOH}) 370(\log \varepsilon 3.07), 325(4 \cdot 00), 310$ (4.00), $265(4 \cdot 30)$, and $240 \mathrm{~nm}(4 \cdot 71)$ (Found: C, $87.5 ; \mathrm{H}$, $4.4 ; \mathrm{N}, 8.0 . \mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~N}_{2}$ requires $\mathrm{C}, 87.6 ; \mathrm{H}, 4.55 ; \mathrm{N}$, $7 \cdot 85 \%$).

Reaction of 3,6-Di-(2-pyridyl)-1,2,4,5-tetrazine (5b) with Acenaphthylene (2).-Similar work-up of a mixture of 3,6 -di-(2-pyridyl)-1,2,4,5-tetrazine (5b) ${ }^{7}$ ($240 \mathrm{mg}, 1 \mathrm{mmol}$) with acenaphthylene ($160 \mathrm{mg}, 1 \mathrm{mmol}$) afforded $7,10-d i$ -(2-pyridyl)-8,9-diazafluoranthene (6b) (60\%) as yellow needles, m.p. $>300^{\circ}, \lambda_{\text {max }}(\mathrm{EtOH}) 365(\log \varepsilon 4 \cdot 10), 325$ (4.05), 268 (4.42), and $238 \mathrm{~nm}(4 \cdot 62), \delta\left(\mathrm{CDCl}_{3}\right) 7.5-8.7$ ($14 \mathrm{H}, \mathrm{m}$) (Found: C, 80.15 ; H, 4.2 ; N, $15.65 . \mathrm{C}_{24} \mathrm{H}_{14} \mathrm{~N}_{4}$ requires $\mathrm{C}, 80.45 ; \mathrm{H}, \mathbf{3 . 9 5} ; \mathrm{N}, 15 \cdot 65 \%$).
[3/2456 Received, 30th November, 1973]

[^2]
[^0]: \dagger In this reaction no 1:2 adduct (3c) or (3d) was detected even under more drastic conditions at $180-200^{\circ}$.
 ${ }^{1}$ Part XI, T. Sasaki, K. Kanematsu, and T. Kataoka, Chem. Letters, 1973, 1183
 ${ }^{2}$ O. Diels and K. Alder, Annalen, 1931, 490, 251.
 3 (a) M. V. Gapeeva, A. U. Stepanyants, N. P. Schushering, Yu. A. Knivel, and R. V. Levina, J. Org. Chem. (U.S.S.R.), 1971, 7, 2519 ; (b) T. Imagawa, M. Kawanishi, and K. Sisido, Chem. Comm., 1971, 1292; (c) T. Imagawa, N. Sueda, and M. Kawanishi, J.C.S. Chem. Comm., 1972, 388; (d) Chem. Letters, 1973, 413.

[^1]: 4 J. A. Reed, C. L. Schilling, jun., R. F. Tarcin, T. A. Rettig, and J. K. Stille, J. Org. Chem., 1969, 34, 2188.

 5 R. N. Warrener, J. Amer. Chem. Soc., 1971, 88, 2346.

 - T. Sasaki, K. Kanematsu, Y. Yukimoto, and T. Hiramatsu, J. Ambr. Chem. Soc., in the press. A similar report has been published; see ref. $3 d$.

[^2]: ' J. F.Geldard and F. Lions, J. Org. Chem., 1965, 30, 318.

